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Femtosecond pump± probe spectroscopy: a theoretical analysis of
transient signals and their relation to nuclear wave-packet motion

NIELS E. HENRIKSEN
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DK-2800 Lyngby, Denmark

and VOLKER ENGEL ‹

Institut fu$ r Physikalische Chemie, Universita$ t Wu$ rzburg, Am Hubland,

D-97074 Wu$ rzburg, Germany

The ® rst part of the review focuses on general expressions for pump± probe
signals for the detection of processes such as intramolecular vibrational energy
redistribution and unimolecular reaction dynamics. Analytical expressions are
presented, which clearly display the connection between the time and the a Š erage
position of the wave packet created by the pump pulse. We discuss how to obtain
the highest resolution, that is how to obtain the closest correspondence between
time and position. To that end we demonstrate, for example that the signal
corresponding to a d pump pulse can be recovered exactly from signals using pump
pulses of ® nite temporal width. The second part is concerned with the relation
between the transient signals and the probability densities associated with nuclear
wave packets. Taking time-resolved photoelectron spectroscopy and pump± probe
¯ uorescence spectroscopy as examples, we demonstrate that it is possible to obtain
information about the temporal changes in probability densities as a function of
interatomic distances. Finally, the phase-retrieval problem of quantum mechanics
is discussed and it is shown that femtosecond time-resolved measurements in
combination with other experimental techniques can provide su� cient information
for the complete characterization of wa Š e packets including the complex-valued
phase.

Contents

1. Introduction 94

2. Pump± probe signals 95

2.1 Detection of transition states 98

2.2 Detection of fragments in unimolecular reactions 99

3. Analytical expressions for the pump± probe signal 100

3.1 The pump excitation 100

3.2 Detection of transition states 102

3.3 Detection of fragments in unimolecular reactions 102

4. Optimal laser pulses 104

4.1 The deconvolution of the pump pulse 104

4.2 The optimal probe pulse 106

‹ Email : voen!phys-chemie.uni-wuerzburg.de

Internationa l Re Š iews in Physical Chemistry ISSN 0144-235 X print}ISSN 1366-591 X online # 2001 Taylor & Francis Ltd
http:}}www.tandf.co.uk}journals
DOI: 10.1080}01442350010028523

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
5
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



94 N. E. Henriksen and V. Engel

5. Mapping of molecular wave packets 106

5.1 Re¯ ection principles of continuous-wave spectroscopy 107

5.1.1 Molecular bound-to-free transitions 107

5.1.2 Photoionization of hydrogen 108

5.2 Transient spectroscopy 109

5.2.1 Time-resolved photoelectron spectroscopy 110

5.2.2 Integrated pump± probe ¯ uorescence spectroscopy 115

5.2.3 Phase retrieval 119

6. Summary 123

Acknowledgements 124

References 124

1. Introduction

The dynamics of elementary physical and chemical processes can be followed in

real time by femtosecond pump± probe spectroscopy [1± 6].

In this review of the theoretical description of pump± probe signals, we focus on the

detection of nuclear motion in gas-phase dynamics. That is, processes such as

intramolecular vibrational energy redistribution (IVR) and unimolecular reaction

dynamics are under investigation.

There are many important contributions to the theoretical description of

pump± probe signals starting from the early days of femtochemistry [7± 14], as well as

many subsequent contributions [15± 28]. For an extensive compilation of references see

the chapter by J. Manz in [4].

Since we treat isolated molecules in the gas phase we shall employ a theoretical

description in terms of wavefunctions and shall not discuss density matrix formu-

lations which are better suited to the description of dynamics in condensed phases [29].

Various experimental techniques are employed to record time-resolved signals, for

example transient absorption, four-wave mixing, ionization or Coulomb explosion

spectroscopy; for reviews see for example [29± 36]. Below we shall mainly concentrate

on integrated pump± probe ¯ uorescence spectroscopy and photoelectron spectroscopy.

In the ® rst part of this review, we consider questions such as how the pump± probe

signal should be interpreted and how the ® nite temporal width of the laser pulses

aŒects the signal. As for the ® rst question, we present, in the limit of ultrashort pump

and probe pulses, analytical expressions for the pump± probe frequency-integrated

¯ uorescence signal. Second, it is well known that the pump± probe signal can depend

quite strongly on the parameters of the pump and probe laser (see for example [18]).

An important question is therefore how to choose the optimal form of the laser pulses

in order to obtain the most faithful detection of the underlying nuclear dynamics, that

is the closest correspondence between the time and the average position of a localized

wave packet.

In an ideal measurement, the pump pulse should launch a localized wave packet on

a potential energy surface at a well de® ned time, that is create the closest possible

correspondence to `a rolling ball ’ . A d pump pulse (i.e. a pulse which is short on a

vibrational time scale but long on the electronic time scale) creates a Franck± Condon

wave packet, that is a replica of the initial state times the transition dipole moment

between the initial state and an electronically excited state, where this wave packet
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Femtosecond pump± probe spectroscopy 95

subsequently evolves in time. The ideal d pulse is not available in practice ; therefore

it is important to understand how, for example, a pump pulse with a ® nite temporal

width aŒects the pump± probe signal. To that end, we shall show that it is, in fact,

possible to eliminate the `blurring ’ of the signal due to the ® nite duration of the pump

pulse. Thus, one can always perform a deconvolution of the pump from the signal and

obtain the signal corresponding to a d pump pulse. Along this line, it is also important

to consider how to choose an optimal probe pulse, again in order to obtain the closest

correspondence between time and average position.

From the pump± probe signals, one can detect the dynamics of a wave packet as a

function of time and directly extract various characteristic times, for example the time

required to break a chemical bond [7] or characteristic vibrational periods [12].

Furthermore, one can even obtain a `mapping of wave packets ’ , that is information

about coordinate-dependent probability changes, as will be discussed in the second

part of the review.

This review is organized in the following way. Section 2 contains general

expressions for pump± probe signals focusing on detection via frequency-integrated

¯ uorescence. In section 3, the general expressions are applied in the derivation of

analytical expressions for the pump± probe signal for the detection of transition states

as well as asymptotic fragments in unimolecular reactions. In section 4, we demonstrate

that the pump± probe signal can be expressed as a convolution of the pulse envelope

with the signal corresponding to a d pump pulse, if the signal for ® nite pump pulses is

integrated over all pump frequencies. Thus, an exact deconvolution of the pump pulse

is possible. The optimal choice of the probe pulse is also discussed. Section 5

establishes the connection between detected spectra and wave packets. After reviewing

re¯ ection principles known from frequency-resolved spectroscopy, similar mapping

procedures are discussed in connection with femtosecond time-resolved spectroscopy.

The review is concluded with a summary given in section 6.

2. Pump± probe signals

We consider, as illustrated in ® gure 1, the interaction between a molecule and two

time-delayed pulses : a pump pulse and a probe pulse. Here we regard the ® eld-induced

coupling of diŒerent electronic states which are labelled as rnª, where n ¯ 0, 1, 2

respectively. Within the electric dipole approximation, the ® eld± molecule coupling

terms take the form (for absorption)

C
pump

(t) ¯ ® l
"!

a
"
(t) exp ( ® ix

"
t), (1)

C
probe

(t) ¯ ® l
#"

a
#
(t) exp ( ® ix

#
t)

where x
"

and x
#

are the carrier frequencies of the pump and probe pulses respectively,

l
"!

and l
#"

are the projections of the transition dipole moments on the polarization

vector of the electric ® eld, and a
"
(t) and a

#
(t) are the pulse envelopes centred around

t ¯ 0 and the delay time t ¯ T respectively.

The pump pulse creates a wave packet which, according to ® rst-order perturbation

theory, can be written in the form

rw
"
(t)ª ¯

i

ò &
t

­ ¢

exp 0 ® i(ò x
"
­ e

!
) t «

ò 1 a
"
(t « ) exp 0 ® iHW

"
(t ® t « )
ò 1 ru

!
ª dt« , (2)

where

ru
!
ª ¯ l

"!
rw

!
ª. (3)
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96 N. E. Henriksen and V. Engel

Figure 1. Pump± probe scheme for direct dissociation: the pump pulse (x
"
) prepares a wave

packet in an excited electronic state with potential curve V
"
. The probe pulse (x

#
) induces

a transition to another electronic state (V
#
) and the total ¯ uorescence from this state is

measured. The probe laser frequency is here chosen such that the wave packet is probed
when it enters the asymptotic region where the distance r exceeds a critical distance r

p
.

This spatial window is denoted as H(r ® r
p
). The potentials represent a simple model for

ICN dissociation where r is the I± C distance relative to the equilibrium position in the
electronic ground state.

rw
!
ª is the initial stationary vibrational ± rotational eigenstate of the molecule, before

the arrival of the pump pulse, e
!

is the energy of this state and H#
"

is the Hamiltonian

for nuclear motion in electronic state (1). The lower limit in the integral has been

extended from some ® nite time t
!
, prior to the arrival of the pump pulse, to minus

in® nity using the fact that the pulse envelope a
"
(t) is eŒectively zero for times earlier

than t
!
. Equation (2) shows that the wave packet created by the pump pulse can be

viewed as a superposition of Franck± Condon wave packets [37] given by

rM(t)ª ¯ exp 0 ® iHW
"
t

ò 1 ru
!
ª, (4)

created over a period of time de® ned by the pulse envelope. It is a coherent

superposition, however, which means that interference terms between Franck±

Condon wave packets created at diŒerent times show up in the probability amplitude

[38].

The probe pulse creates a new non-stationary state rw
#
(t)ª. In the limit of non-

overlapping pump and probe pulses, which we shall consider in the present paper, this

state can be calculated according to ® rst-order perturbation theory, now with rw
"
(t)ª

as the initial state. At the ® nal time, t
f
, after the probe pulse has decayed to zero, it can

be written in the form

rw
#
(t

f
)ª ¯ exp 0 ® iHW

#
(t

f
® T )

ò 1 rw
#
(T )ª, (5)
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Femtosecond pump± probe spectroscopy 97

where

rw
#
(T )ª ¯

i

ò &
¢

­ ¢

exp ( ® ix
#
t)a

#
(t) exp 0 iHW # t

ò 1 l
#"

exp 0 ® iHW
"
t

ò 1 rw
"
(T )ª dt. (6)

The total pump± probe ¯ uorescence signal P(T ) is assumed to be proportional to

the norm of rw
#
(t)ª after the probe pulse has decayed to zero :

P(T ) ¯ ©w
#
(t

f
) rw

#
(t

f
)ª. (7)

It depends on the form of the pump as well as the probe pulses, we have here only

emphasized the dependence on the time delay T. The signal can be written in the form

P(T ) ¯ ©w
"
(T ) r #

"#
(x

#
) rw

"
(T )ª, (8)

where the probe operator

#
"#

(x
#
) ¯ PW ‹ (x

#
)PW (x

#
), (9)

with

PW (x
#
) ¯

1

ò &
¢

­ ¢

exp (® ix
#
t)a

#
(t) exp 0 iHW

#
t

ò 1 l
#"

exp 0 ® iHW
"
t

ò 1 dt ; (10)

this expression incorporates the possible motion of the wave packet, rw
"
(t)ª, during

the action of the probe pulse.

For an ultrashort probe pulse, that is a
#
(t) is strongly peaked around t ¯ T, one can

introduce the following approximation [9, 19± 21, 24± 26, 39]

exp 0 iHW
#
t

ò 1 exp 0 ® iHW
"
t

ò 1 ¯ exp 0 i(V#
® V

"
) t

ò 1 . (11)

This approximation implies that only terms linear in time are retained, since

exp (AW )exp (BW ) ¯ exp (CW ), (12)

where CW ¯ AW ­ BW ­ [AW , BW ]}2­ [[[. That is, one neglects commutators between the

kinetic energy operator and the coordinate-dependent terms in the integral, that is

potentials and the transition dipole moment. The signal can now be written in the form

P(T ) ¯ & w $
"
(q, T ) rF [D(q)® x

#
] r#w

"
(q, T )dq

¯ & rF [D(q)® x
#
] r# rw

"
(q, T ) r# dq, (13)

where

F [D(q)® x
#
] ¯ l

#" & +¢

­ ¢

a
#
(t)exp 0 i(D(q)® ò x

#
) t

ò 1 dt. (14)

Here q denotes the collection of all nuclear coordinates, and D(q) ¯ V
#
(q)® V

"
(q) is

the diŒerence between the potential energy surfaces in the electronic states (2) and (1).

Thus, the signal measures the norm of the wave packet w
"

at time T within the window

rF [D(q)® x
#
] r# (Franck± Condon window).

The expressions presented above are valid for direct as well as indirect (`standard ’ )

unimolecular reactions. The relation between pump± probe signals and the kinetics of

indirect unimolecular reactions, that is the exponential decay of reactants and the
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98 N. E. Henriksen and V. Engel

exponential rise of the product population, has been highlighted recently [40]. To that

end, a description where the wave-packet dynamics is expressed in terms of the decay

of quasibound resonance states was invoked.

Consider, as an example, a Gaussian probe pulse a
#
(t) ¯ (c}p )"/#exp [® c(t ® T )#].

The probe operator (Franck± Condon window) takes the form

rF [D(q)® x
#
] r# ¯ rl

#"
r# exp 0 ® [x

#
® D(q)} ò ]#

2c 1 . (15)

In order to enhance insight, we limit now the discussion to one degree of freedom,

replacing the vector q by the coordinate r.

It is interesting to note that (neglecting the coordinate dependence of the transition

dipole moment) the correction to equation (11) in the order t# contains the commutator

[TW , D] ¯ ®
ò #

2m 0 d#D

dr#
­ 2

dD

dr

d

dr 1 , (16)

where TW denotes the kinetic energy operator and m the mass. Assuming a linear

diŒerence potential, we recognize that the commutator is proportional to the

momentum operator. As a consequence, an incorporation of the correction term

accounts for the motion of the wave packet during the excitation process. If now the

momentum operator is replaced by its expectation value ©pª
T
, calculated with the

state rw
"
(T )ª, the correction term to second order in t is of the form

exp 0 ® 1

2

[TW , D] t#

ò # 1 ¯ exp 0 i12 dD

dr

©pª
T

m

t#

ò 1 . (17)

Note that this phase factor exclusively depends on time. In the case when a linearly

chirped probe pulse with a time-dependent frequency x
#
(t) ¯ x

#
­ at is employed, the

chirp parameter a may be chosen as a ¯ ® "
#

(dD}dr) [©pª
T
}(m} ò )] so that the term

(17) is, within the employed approximations, exactly cancelled. This allows, by

adjusting the chirp parameter, inward and outward motion of vibrational wave

packets to be distinguished, as was documented by use of time-resolved photoelectron

spectroscopy [41].

2.1. Detection of transition states

We consider ® rst the detection of transition states, that is con® gurations between

reactants and products in unimolecular reactions. The detection of transient

con® gurations corresponding to IVR or simple vibrational motion in a diatomic

molecule is also within the framework of the following discussion.

We linearize the diŒerence potential around the `Franck± Condon point ’ , where

ò x
#
¯ D(r

p
). Thus,

D(r) ¯ D(r
p
)­ g(r ® r

p
), (18)

where g ¯ D !
r= rp

is the derivative of the diŒerence potential. We have assumed that the

equation ò x
#
¯ D(r

p
) has only one solution for r

p
but it should be noted that, in some

cases, the equation can have more than one solution. Equation (15)now takes the form

rF [D(r)® x
#
] r# ¯ rl

#"
r# exp 9 ® 0 gò 1 # (r ® r

p
)#

2c : . (19)

Thus, the probe operator is a Gaussian around the Franck± Condon point r ¯ r
p
. The

position of this point depends on the probe frequency x
#
. If the probe pulse is too short
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Femtosecond pump± probe spectroscopy 99

Figure 2. Pump± probe signal for a d pump pulse (Ð Ð ) and for 30 and 60 fs Gaussian pump
pulses (full width at half-maximum). All signals were normalized to the same asymptotic
value. The zero of time is chosen such that it is at the centre of the pump pulse.

(c ! ¢) or, equivalently, g ! 0, the probing becomes insensitive to the potential

energy diŒerence. In this limit where the window is, essentially, constant over the

width of the wave packet (at all times), P(T )! rl
#"

r# dr rw
"
(r, T )r#, where the

coordinate dependence of the transition dipole moment is neglected as in the

derivation of equation (13). Thus, in this limit, the signal is proportional to the norm

of the wave packet and, consequently, independent of the position.

2.2. Detection of fragments in unimolecular reactions

In the case of fragment detection for a dissociation process, the carrier frequency

of the probe laser matches the asymptotic value of the diŒerence potential. The

approximation in equation (18) is not appropriate in this case. Instead, we write

D(r) ¯
1

2
3

4

D(r
p
) for r & r

p
,

D(r
p
)­ g(r ® r

p
) for r ! r

p
,

(20)

which implies that the probe state is equivalent to equation (19) for r ! r
p

and constant

for r & r
p
. If the probe pulse is not too short or, equivalently, g ! ¢, the probe

operator is approximately given by the form

rF [D(r)® x
#
] r# ¯ rl

#"
r#H(r ® r

p
), (21)

that is a step function.

The dissociation of ICN into I ­ CN is chosen as a numerical example (see ® gure

1). In the ® rst gas-phase femtosecond time-resolved experiments, Zewail and co-

workers [42, 43] investigated this system. Quantum calculations were performed

within an one-dimensional model by Williams and Imre [8]; see [44] for details. Figure

2 shows pump± probe signals for a d pump pulse (solid curve) and for 30 and 60 fs

Gaussian pump pulses (full width at half-maximum) with a detection window as in

equation (21), which starts at r
p
¯ 3 au. In the plot, the zero of time is chosen such that

it is at the maximum of the envelope function for the respective pump pulses. The
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100 N. E. Henriksen and V. Engel

broadening of the signal due to ® nite pulse widths is clearly seen in the ® gure. In

addition, it is observed that the three curves cross almost at the same point close to a

time of 60 fs. It should, however, be noted that a symmetric Gaussian pump pulse was

used and similar agreement would not have been obtained with an asymmetric pump

pulse. Furthermore, the frequency of the 30 and 60 fs pump pulses was chosen to be

at the maximum of the absorption based (4.5 eV), and one should keep in mind that,

in general, the signals will be frequency dependent.

3. Analytical expressions for the pump± probe signal

The ® rst analytical expression for pump± probe signals was presented by Bersohn

and Zewail [7]. Their expression was given heuristically and based on a classical

description of the nuclear dynamics.

In this section, we shall show that in the limit of an ultrashort pump (and probe)

pulse the general form of the pump± probe signal can be obtained analytically.

3.1. The pump excitation

We write equation (2) in the form

rw
"
(t)ª ¯

i

ò
exp 0 ® iHW

"
t

ò 1 & t

­ ¢

dt « exp 0 ® i(ò x
"
­ e

!
) t «

ò 1 a
"
(t « ) exp 0 iHW

"
t «

ò 1 ru
!
ª. (22)

The pulse envlope of the pump is centred at the time t ¯ 0 and represented by a

Gaussian form

a
"
(t) ¯ E

!0 c

p 1 "
/#

exp ( ® ct#), (23)

where c is large, corresponding to an ultrashort pump pulse. For such a pulse, we can

again use equation (12) to split the time evolution operator into two parts, one which

depends on the potential V
"

and one which depends on the kinetic energy operator T# .
Equation (22) can now be written in the form

rw
"
(t)ª ¯

i

ò
exp 0 ® iHW

"
t

ò 1 & t

­ ¢

dt « exp 0 ® i[ò x
"
® (V

"
® e

!
)]

ò 1 a
"
(t « ) exp 0 iTW t «ò 1 ru

!
ª.

(24)

The propagation involving the kinetic energy operator corresponds to the propagation

of the initial state as a free particle. Thus, in the present case, this propagation re¯ ects

the spreading of the initial state during the interaction with the ultrashort pump pulse.

In the following, we neglect this spreading. For times t " 0, such that the magnitude

of the envelope function of the pump pulse is negligible, the integral (note the

similarity with the Franck± Condon window in equation (14)) corresponds to a

Fourier transform of the pulse envelope, and

rw
"
(t)ª ¯

® iE
!

ò
exp 0 ® iHW

"
t

ò 1 ru
!
ª exp 0 ® X#

4c 1 , (25)

where X ¯ x
"
® (V

"
® e

!
)} ò .

A one-dimensional model is considered and, for a molecule in the vibrational

ground state, u
!
(r) is approximately a Gaussian, that is

u
!
(r) ¯ exp 0 i

ò
[A

!
(r ® r

!
)#­ s

!
]1 , (26)
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Femtosecond pump± probe spectroscopy 101

where A
!
¯ i Im(A

!
) ¯ imx}2, x is the vibrational frequency, m is the mass, and

normalization implies that s
!
¯ (i ò }4) ln ² p ò }[2 Im (A

!
)]́ . Next, in the Fourier trans-

form of the pulse envelope, we linearize the potential around the centre of the initial

state,

V
"
(r) ¯ V

"
(r

!
)­ a(r ® r

!
), (27)

where a is the derivative of the potential at r ¯ r
!
.

After substitution of equations (26) and (27) into equation (25), the wave packet

created by the pump pulse can be written in the form

rw
"
(t)ª ¯

iE
!

ò
exp 0 ® iHW

"
t

ò 1 rU
!
ª, t " 0 (28)

where

©r rU
!
ª ¯ exp 0 ® mx(r ® r

!
)#

2 ò
­

is
!

ò 1
¬ exp 0 ® a#(r ® r

!
® r

e
)#

4 ò #c 1 , (29)

and r
e
¯ ² ò x

"
® [V

"
(r

!
)® e

!
]́ }a. Thus, the wavefunction is a product of two Gaussians,

the initial Gaussian, that is the Gaussian generated by a d pump pulse, times a

displaced Gaussian where the displacement is proportional to the detuning

ò x
"
® V

"
(r

!
). The norm of this wave packet created by an ultrashort pump pulse

depends on the detuning. Thus, a large detuning implies that the norm eventually

vanishes. The product of the two Gaussians is proportional to a single Gaussian

centred at a position given as a weighted sum of r
!
and r

e
. For an alternative derivation

of the same result, see [44] (for a similar expression, see also [9]).

For ò x
"
¯ V

"
(r

!
)® e

!
, that is `on-resonant ’ pumping at the centre of the absorption

band, ©r rU
!
ª takes the Gaussian form

©r rU
!
ª ¯ exp 9 ® 0 mx

2 ò
­

a#

4 ò #c 1 (r ® r
!
)#­

is
!

ò : , (30)

with the same expectation value of the position as in the initial state in equation (26),

that is r
!
. The width of the wave packet has also changed from ò }2mx to ( D r)#

!
¯

ò }(2mx ­ a#} ò c), that is the width is reduced compared with the Franck± Condon

wave packet. Since the Gaussian is still a minimum uncertainty packet, the reduced

width implies that an ultrashort pulse as de® ned above, produces a squeezed state.

Similar squeezing phenomena have been discussed previously [45, 46]. In the limit

where c ! ¢, corresponding to a d pump pulse, equation (29) reduces, as expected, to

the Franck± Condon wave packet.

We consider in the following `on-resonant ’ pumping where r
e
¯ 0 in equation (29)

corresponding to the initial state in equation (30), and assume that the dynamics can

be described within a (time-dependent) local harmonic approximation to the potential.

Then ©r rw
"
(t)ª in equation (28) can at all times be represented by a Gaussian wave

packet of the form [47, 48]

©r rG(t)ª ¯ exp 0 i

ò
[A

t
(r ® r

t
)#­ p

t
(r ® r

t
)­ s

t
]1 . (31)
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102 N. E. Henriksen and V. Engel

The time evolution of the parameters is given by simple equations of motion. For

example, the centre of the wave packet (r
t
, p

t
) evolves in time according to Hamilton’s

equations of motion.

3.2. Detection of transition states

For detection of transition states, using equations (13)and (19), and also equations

(28) and (29) (for r
e
¯ 0) the pump± probe signal takes the form

P(T ) ¯
E#

!
rl

#"
r#

ò #[2 p ( D r)#
T

]"/# &
¢

­ ¢

dr exp 9 ® 0 gò 1 # (r ® r
p
)#

2c : exp 0 ® (r ® r
T

)#

2( D r)#
T

1
¯

E#
!
rl

#"
r#

ò # 0 2c

2( D r)#
T
(g}ò )# ­ 2c 1 "

/#
exp 0 ® (g} ò )#

2( D r)#
T
(g}ò )# ­ 2c

(r
T
® r

p
)# 1 , (32)

where r
T

and ( D r)
T

are the expectation value and uncertainty respectively of the

position at time T. Thus, the signal takes a Gaussian form as the wave packet moves

in and out of the probe window (under the assumption of no spreading and constant

velocity as the Gaussian wave packet crosses the window). The width of the signal is

related to the width of the wave packet and to the duration of the probe pulse. Thus,

a short probe (c large) or a wave packet with a large uncertainty in the position gives

a broad signal. Equation (32) also shows that the pre-exponential factor in the

expression will decay as the wave packet spreads. That is, if the wave packet can pass

repeatedly through the probe window, the peak height of the signal will decay when

the wave packet spreads.

3.3. Detection of fragments in unimolecular reactions

We consider now fragment detection for a dissociation process, where the carrier

frequency of the probe laser matches the asymptotic value of the diŒerence potential.

To a good approximation, the detection window can be represented by the expression

in equation (21). Thus, the pump± probe signal becomes, according to equation (13),

P(T ) ¯ rl
#"

r# & ¢

rp

dr rw
"
(r, T ) r#. (33)

Using again the Gaussian wave packet approximation, the integral takes the form [37]

P(T ) ¯
E#

!
rl

#"
r#

ò #(2 p ( D r)#
T

)"/# &
¢

rp

dr exp 0 ® (r ® r
T

)#

2( D r)#
T

1 , (34)

which can be expressed as

P(T ) ¯
E#

!
rl

#"
r#

2ò # 9 1 ­ erf 0 r
T
® r

p

2"/#(D r)
T

1 : , (35)

where the error function is de® ned by

erf (x) ¯
2

p "/# & x

!

exp ( ® u#)du. (36)

We observe that, at the time when the centre of the wave packet has reached the

detection window, that is r
T

¯ r
p
, P(T ) is at half of its asymptotic value. It should also

be noted that the time derivative of the signal at this point is given by the ratio of the
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Femtosecond pump± probe spectroscopy 103

Figure 3. (a) The result of the analytical model compared with the numerically calculated
pump± probe signal for a d pump pulse (Ð Ð ). (b) The pump± probe signal deconvoluted
from a signal obtained with a 30 fs (full width at half-maximum) Gaussian pump pulse
centred at t

p
¯ 60 fs. The pump± probe signal for a d pump pulse is also shown (Ð Ð ).

mean speed to the uncertainty ( D r)
T

[37]. This ratio gives the intrinsic time resolution

according to quantum mechanics. In the limit where the uncertainty is negligible, the

signal approaches a step function, as expected from a classical mechanical description

of the dissociation dynamics.

Figure 3 (a) shows the almost exact agreement between the pump± probe signal for

a d pump pulse (solid curve) obtained by numerical solution of the Schro$ dinger

equation, and the result obtained from the analytical expression in equation (35). As

pointed out above, the slope of the signal depends on the width of the wave packet and,

consequently, the spreading of the wave packet as it travels from the initial position

into the detection window. The excellent agreement shows that the time-dependent

local harmonic approximation to the exponential potential is well ful® lled in the

present case.

The analytical model presented above documents that the initial values of the

Gaussian wave-packet parameters depend on the form of the pump laser (see equation

(30)). In addition, a broad initial state will tend to give a `broad ’ signal (i.e. a small

slope). We can also understand, at least qualitatively, how a change in the frequency

of the pump can change the `dissociation time’ , that is the time when the centre of the

wave packet has reached the detection window. From equation (29), with a repulsive

potential (a negative) as in ® gure 1, we can understand how the wave packet created

by the pump pulse changes as a function of the frequency. With `oŒ-resonant ’

frequencies at the wings of the absorption band, that is ò x
"
" V

"
(r

!
) and ò x

"
! V

"
(r

!
),

the maximum in the amplitude of the wave packet will be displaced to r ! r
!

and
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104 N. E. Henriksen and V. Engel

r " r
!

respectively. Compared with the pumping at the centre of the absorption band,

the ® nal average momentum will accordingly be higher when ò x
"
" V

"
(r

!
) and lower

when ò x
"
! V

"
(r

!
). Thus, a shorter dissociation time is expected in the ® rst case

whereas, when ò x
"
! V

"
(r

!
), the dissociation time is expected to be longer than in

the on-resonant case described by equation (35).

Leaving the ultrashort pump± probe limit assumed in equation (30), a pump pulse

with a long duration will create a broad wave packet. Assuming that this wave packet

can be represented by a Gaussian wave packet, equation (35) shows that a wave packet

with a large uncertainty in the position gives a broad signal, in accordance with the

numerical simulations in ® gure 2.

4. Optimal laser pulses

The signal P(T ) gives, essentially, the connection between the delay time and the

average position of the wave packet measured within the Franck± Condon window.

We have seen that the duration of the laser pulses aŒects the form of the signal. Thus,

the signal is broadened when the duration of the pump pulse is increased. For the

probing, an ultrashort probe pulse is, however, not an optimal pulse since such a pulse

gives a signal where the connection between the delay time and the average position is

`blurred ’ . We consider now how to choose the optimal form of the laser pulses in order

to obtain the closest correspondence between time and average position, that is how

to minimize the width of the signal. For the pump pulse, we shall show that the signal

corresponding to the optimal pump can be extracted from the experimental signal

whenever the pulse envelope is known.

4.1. The decon Š olution of the pump pulse

It is often assumed that the combined eŒect of two contributions to an experimental

signal can be expressed as a convolution of the individual contributions [49].

Speci® cally, in the ® eld of pump± probe spectroscopy, it has been suggested [50] that,

for a pump pulse with ® nite width, the pump± probe signal can be analysed in the

following way: the signal has a certain time dependence S
FC

(t) for an in® nitely narrow

d pump pulse. When the pump pulse has a ® nite width, its intensity has a time

dependence given by I(t), and now each molecule is transferred to the excited state at

a slightly diŒerent time t « . The resulting signal at time t is a sum of terms of the form

I(t « )S
FC

(t ® t« ). This sum (integral) takes the form of a convolution of the intensity I(t)

with the d pulse signal S
FC

(t). We consider now the validity of such an approach within

the framework of quantum mechanics.

In what follows, we shall show that it is possible to extract the signal for a

Franck± Condon wave packet from measurements using pump pulses of ® nite temporal

width [44]. We start with the general expression for pump± probe signals in the limit of

non-overlapping pump and probe pulses, and write equation (8) in the form

P(x
"
, T ) ¯ ©w

"
(T ) r W

"#
(x

#
) rw

"
(T )ª, (37)

where W
"#

(x
#
) is de® ned in equation (9).

Now using the ® rst-order expression in equation (2) for the wave packet,

P(x
"
, T ) ¯

1

ò # & T

­ ¢

dt§ & T

­ ¢

dt « exp [ix
"
(t§ ® t « )] a

"
(t« )a

"
(t§)

¬ ©M(T® t§)r W
"#

(x
#
)rM(T ® t « )ª, (38)
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Femtosecond pump± probe spectroscopy 105

where

rM(T ® t)ª ¯ exp 0 ® iHW
"
(T ® t)

ò 1 ru
!
ª (39)

is the Franck± Condon wave packet associated with a d pump pulse excitation. This

expression shows that, at a given pump frequency, quantum-mechanica l interference

terms show up between Franck± Condon wave packets created at diŒerent times.

Furthermore, these `oŒ-diagonal ’ terms are frequency dependent.

We integrate now over the frequencies of the pump laser. The signal S(T ) can then

be written as

S(T ) ¯ & ¢

­ ¢

P(x
"
, T )dx

"

¯
p

2 ò # & T

­ ¢

dt§ & T

­ ¢

dt « d(t§ ® t « )a
"
(t « )a

"
(t§)©M(T ® t§) r W

"#
(x

#
) rM(T® t « )ª

¯
p

2 ò # & T

­ ¢

dt « [a
"
(t « )]#©M(T® t « ) r W

"#
(x

#
) rM(T ® t « )ª. (40)

This is an integral of signals for Franck± Condon wave packets created at diŒerent

times with amplitudes given by the square of the pulse envelope. P(x
"
, T ) is only non-

zero within the absorption band of electronic state (1), therefore the integration over

frequency can be extended to in® nity.

This expression can be rewritten as a convolution

S(T ) ¯
p

2 ò # & T

­ ¢

dt « [a
"
(t « )]#©M(T® t « ) r W

"#
(x

#
) rM(T ® t « )ª

¯
p

2 ò # &
¢

!

dy [a
"
(T ® y)]#©M(y) r W

"#
(x

#
) rM(y)ª

¯
p

2 ò # &
¢

­ ¢

dy [a
"
(T® y)]#H(y)©M(y) r W

"#
(x

#
) rM(y)ª, (41)

where we changed variable to y ¯ T® t « in the second line. In the last line the lower

integration limit is extended to minus in® nity, using the fact that a
"
(T ® y) has its

maximum for y ¯ T and a
"
(T ® y) E 0 for y % 0 since the duration is substantially

smaller than the delay time T (the basic assumption of non-overlapping pump and

probe pulses). Thus, the frequency-integrated signal is expressed as a convolution

between the square of the pulse envelope and the signal for a Franck± Condon wave

packet :
S

FC
(t) ¯ H(t)©M(t) r W

"#
(x

#
)rM(t)ª. (42)

In order to obtain the frequency-integrated signal experimentally, it is necessary to

make a series of measurements covering the entire absorption band.

The deconvolution of the pump pulse is, in principle, straightforward using some

basic rules of the Fourier transformation [49]. Thus, the Fourier transform of a

convolution is equal to the product of the Fourier transforms of each function. This

product can then simply be divided by the Fourier transform of the squared pulse

envelope, in order to isolate the desired signal for the Franck± Condon wave packet.

Details can be found in [44].

Thus, in short, the total (integrated) pump± probe ¯ uorescence signal can be

expressed as a convolution between the square of the pulse envelope and the signal for
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106 N. E. Henriksen and V. Engel

a Franck± Condon wave packet. This is an exact statement when the signal is

integrated over the frequency of the pump laser, that is over the entire absorption

band. The derivation was based on ® rst-order perturbation theory for the ® eld±

molecule coupling and, furthermore, it was assumed that the pump and probe pulses

are non-overlapping. When the signal is expressed as a convolution it is possible to

eliminate the `blurring ’ due to the ® nite duration of the pump pulse. Thus, an exact

procedure has been established for the extraction of the signal for a Franck± Condon

wave packet from measurements using a pump pulse of ® nite temporal width.

Figure 3(b) shows the pump± probe signal for a d pump pulse (solid curve) and the

result obtained by deconvolution from a frequency-integrated signal (equation (40))

calculated with a 30 fs (full width at half-maximum) Gaussian pump pulse centred at

t
p
¯ 60 fs. The agreement is perfect and within the numerical resolution of the

calculation. The small oscillations in the deconvoluted signal come from small

absolute values (beyond the numerical accuracy) in the Fourier transform of the

convoluted signal (41) [44]. It should be noted that, essentially, the same good

agreement is obtained from a deconvolution, and not from the frequency-integrated

signal but from a signal corresponding to a pump frequency at the maximum of the

absorption spectrum. The absorption band for ICN is fairly narrow and symmetric

and, in fact, a deconvolution at any pump frequency within this band will give a result

which is fairly close to the signal given in ® gure 3.

4.2. The optimal probe pulse

The signal (as the wave packet moves in and out of the probe window) depends on

the temporal width of the probe pulse (equation (32)). A d probe pulse (i.e. a pulse

which is short on the time scale of vibrational motion but long on the electronic time

scale) is not the optimal pulse for the detection of nuclear motion, since such a pulse

gives absorption at all internuclear positions. The width of the signal decreases as the

temporal width of the probe pulse is increased. The derivation of equation (32) was,

however, based on the assumption of an ultrashort probe pulse. Consequently we

cannot determine an optimal temporal width based on this expression. When equation

(11) is replaced by a relation which is valid to second order in time, with a short

Gaussian probe pulse with a temporal width t
p
, it is again possible to derive an

analytical expression [25]. This expression includes, approximately, the motion of the

wave packet during probing. It can be shown that the highest resolution of the signal

is obtained when [25]

t
p
¯

1

(g Š
c
)"/#

(43)

where g is de® ned in equation (18), that is it is the slope of the diŒerence potential at

the Franck± Condon point, and Š
c
is the expectation value of the velocity. Thus, a short

probe is required when the velocity and}or slope is large. The optimal probe pulse

must, however, normally be found experimentally, since the velocity of the wave

packet as well as the slope of the diŒerence potential are unknown.

5. Mapping of molecular wave packets

In the preceding sections we discussed the relation of femtosecond time-resolved

pump± probe signals to the nuclear wave-packet motion and in particular the in¯ uence

of the characteristics of pump and probe laser pulses. The issue was to show how far

these signals re¯ ect properties of the quantum dynamics prepared by femtosecond
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Femtosecond pump± probe spectroscopy 107

excitation. In the second part of this review we shall ask a more ambitious question :

is it possible to characterize temporal changes in the coordinate-dependent probability

density distribution within a time-resolved measurement? Alternatively, an even more

ambitious question : can such measurements provide us with the knowledge about the

complex-valued wavefunction describing a molecular ensemble?

To connect to common grounds we shall ® rst review re¯ ection principles which are

well known in continuous-wave spectroscopy measurements [51, 52]. As examples we

consider molecular photodisociation and atomic ionization. Similar principles can

also be found in continuum resonance Raman [53± 57] or state-selected photofragment

spectroscopy [58, 59]. After this discussion we turn to femtosecond transient

experiments to illustrate that indeed, at least for simple systems, the probability-

density distribution and its temporal changes can directly be monitored using various

pump± probe arrangements. Finally, we discuss the phase retrie Š al problem of quantum

mechanics and show that it is possible to characterize the wavefunction of a system

completely with the help of femtosecond spectroscopy.

5.1. Re¯ ection principles of continuous-waŠ e spectroscopy

5.1.1. Molecular bound-to-free transitions

As a ® rst example we treat the bound-to-free transition in a diatomic molecule, as

illustrated in ® gure 1, that is a photodissociation process. The absorption spectrum is

given by the `golden rule ’ expression [60]

r(x
"
) C

f

r©w
f
® rl

"!
rw

!
ªr#d(E

f
® (e

!
­ x

"
)) (44)

Here rw
!
ª denotes the initial bound state of energy e

!
, rw

f
® ª the scattering state of

energy E
f
, x

"
is the photon energy and l

"!
is the transition dipole moment between the

electronic states r0ª and r1ª.

Recasting equation (44) in a time-dependent form [61± 63] yields

r(x
"
) C & exp (ix

"
t)c(t)dt, (45)

with the time correlation function c(t) de® ned as

c(t) ¯ - l
"!

w
!
rexp 0 ® iHW

"
t

ò 1 l
"!

exp 0 iHW
!
t

ò 1 w
! . . (46)

A re¯ ection principle is now derived using an approximation as introduced in section

2 (equation (11)), namely

exp 0 ® iHW
"
t

ò 1 l
"!

exp 0 iHW ! t

ò 1 C exp 0 ® iV
"
t

ò 1 l
"!

exp 0 iV!
t

ò 1 ¯ exp 0 ® iDt

ò 1 l
"!

, (47)

where D ¯ V
"
® V

!
is a diŒerence potential which, in our case, depends on the

interatomic distance r of the diatomic molecule. The spectrum then takes the form

r(x
"
) C & & rl

"!
w

!
(r) r# exp 9 i0 x"

®
D(r)

ò 1 t : dt dr. (48)

The time integral is a representation of the d function (apart from unimportant

factors) so that, using its properties [60], the spectrum can be expressed as

r(x
"
) C

i

1

rD « (r
i
)r

rl
"!

w
!
(r

i
) r#. (49)
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108 N. E. Henriksen and V. Engel

Here the points r
i
are roots of the equation

D(r
i
)® x

"
¯ 0. (50)

It is instructive to evaluate the spectrum for the case of a linear diŒerence potential

(equation (18)), when only a single solution r
"

of equation (50) exists :

r(x
"
) C 1

rg r
rl

"!
w

!
(r

"
) r#. (51)

We now recognize that the absorption spectrum at a ® xed photon energy x
"

is

proportional to the product function rl
"!

(q
"
)w

!
(r

"
) r# at the distance r

"
where the

diŒerence potential equals x
"
, that is where equation (50) holds. In particular, if the r

dependence of the dipole moment function is neglected (Condon approximation), the

absorption spectrum re¯ ects the modulus squared of the initial vibrational wave-

function. Many examples have been found which show the above derived re¯ ection

principle to be valid; for an extended discussion see for example the book by Schinke

[64].

5.1.2. Photoionization of hydrogen

The re¯ ection principle derived in section 5.1.1 does, of course, not only apply to

molecules. An interesting example is its manifestation in the photoionization of the

hydrogen atom, as was elaborated by Rost [65]. Consider this atom in its 1s state (w
"!!

)

interacting with an external electric ® eld of unit ® eld strength directed along the z axis,

so that the atom± ® eld interaction term is of the form l ¯ r cos (h), where r, h are polar

coordinates. The total photoionization cross-section [66] then can be written in a time-

dependent form as (employing atomic units in this section)

r(x) C & exp (ixt)©r cos (h)w
"!!

rexp ( ® iHW t) r cos (h)exp (iHW t)w
"!!

ª dt. (52)

Using the identity cos (h)Y
!!

(h, }) ¯ 1}3"/#Y
"!

(h, }), the angular part of the integral

can be evaluated to yield the correlation function

c(t) ¯ %
$ & r$ exp (® r) exp ( ® iHW

"
t)r exp (iHW

!
t)exp ( ® r)dr, (53)

where HW
"

and HW
!

diŒer in the centrifugal term D(r) ¯ r­ # which here takes the role of

the diŒerence potential. Neglecting the commutators between the kinetic energy

operators and the coordinate-dependent functions yields

c(t) ¯ %
$ & r% exp ( ® 2r)exp [® iD(r) t] dr. (54)

In evaluating the time integral appearing in the expression for the photoionization

cross-section, a d function is obtained which selects the particular r value where D(r)

¯ x, that is r ¯ 1}x"/#. Thus we arrive at the expression

r(x) C exp ( ® 2}x"/#)

x­ (/#
. (55)

Here the connection between the analytical expression for the cross-section and the

hydrogen ground-state radial wavefunction is not so obvious. In particular the

linearization of the diŒerence potential, as used in the molecular case of section 5.1.1,

is not possible. However, if the factor 1}x­ $/# which stems from the derivative of the
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Femtosecond pump± probe spectroscopy 109

diŒerence potential (see equation (49)) is accounted for, the remaining function q(x)

is of the form

q(x) ¯
1

x#
exp 0 ® 2

x"/#1 , (56)

which, using the relation between the radial coordinate r and x, is identical with the

radial probability density of the 1s state of hydrogen. Note, however, that there is an

additional x-dependent factor in the expression for the cross-section [66] which we did

not include in the discussion.

5.2. Transient spectroscopy

We now shall discuss how the ideas outlined above relate to femtosecond time-

resolved spectroscopy. There are several techniques which allow for a `wave-packet

mapping ’ . Let us shortly describe some of these.

(i) Time-gated emission spectroscopy. Here a pump± pulse prepares a non-

stationary state in an excited electronic state of a molecule. After some time T,

the frequency-resolved emission spectrum is detected. In doing so, one

employs a short time window b(t ® T ) centred around T. The idea is that the

wave packet does not move essentially during the time interval de® ned by the

window. As a result, the initial state in the emission process resembles a

stationary state and the spectrum re¯ ects the probability-density distribution

in just the same way as an absorption spectrum does (see section 5.1.1). The

calculation of the time- and frequency-resolved emission spectrum is

straightforward but cumbersome [67± 69]. The technique was applied in an

experiment on the sodium dimer [70].

(ii) Time-resol Š ed kinetic energy time-of-¯ ight (KETOF ) spectroscopy. In this case

the wave-packet motion in a neutral electronic state is probed by excitation to

a dissociative state of the molecular ion. Then the kinetic energy distribution

of the ionic fragments is measured. Since the diŒerence potential between the

neutral and ionic electronic state depends, in general, on the bond distances

(i.e. the ionization potential is coordinate dependent), ionization at diŒerent

times, when the wave packet is located at diŒerent positions, yields diŒerent

momentum distributions. The latter then re¯ ect the coordinate dependence of

the probability density. This was demonstrated by Assion et al. [71] using the

Na
#

molecule. We note, that the theory to describe such experiments is very

similar to what will be described below in connection with time-resolved

photoelectron spectroscopy.

(iii) Coulomb explosion spectroscopy. Consider a wave packet which is the initial

state for an ionization process in a diatomic molecule at a ® xed time. If the

laser pulse is short, the wave packet does not move during the ionization

process. Employing an ultra-intense pulse results in multiple ionization

(Coulomb explosion) so that the nuclei interact with each other through the

unshielded Coulomb repulsion. The technique, in fact, is similar to the

KETOF technique, that is the measured momentum distribution of the ions

re¯ ects the probability density of the initial wave packet [35, 72, 73]. Here the

ionic potential is of the simple form V
+
(r) C 1}r.

In what follows we shall, in detail, describe two methods to characterize nuclear

wave packets.
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110 N. E. Henriksen and V. Engel

5.2.1. Time-resol Š ed photoelectron spectroscopy

The idea to employ time-resolved photoelectron spectroscopy to monitor

molecular wave-packet dynamics was originally presented by Seel and Domcke [74,

75]. In their theoretical study they used a model for the vibrational motion in pyrazine

on non-adiabatically coupled surfaces to illustrate that a photoelectron spectrum is an

ideal observable to reveal details of the nuclear dynamics. Following this idea we

investigated, in a series of papers [76± 79], the simpler case of diatomic molecules. In

the latter case, the idea of wave-packet mapping appears in a straightforward manner

since only one internal coordinate, namely the atomic bond distance, is involved.

Let us return to our example as displayed in ® gure 1. The pump± pulse prepares a

wave packet rw
"
(t)ª which moves outwards on a repulsive potential curve. The

transition to the r­ ª state of the molecular ion (say, the ionic ground state) is induced

by the time-delayed probe pulse. We now calculate the nuclear ionic wavefunction

within the following approximations.

(i) The transition is treated within ® rst-order perturbation theory.

(ii) The coupling between the electrons and the nuclei (Born± Oppenheimer

approximation ) and between the scattered photoelectron and the core

electrons are neglected.

Under assumption (ii) the nuclear Hamiltonian of the ionic state is of the form

HW
+

¯ TW ­ V
+
­ E, (57)

where T# is the kinetic energy operator of the nuclei, V
+

is the potential and E denotes

the kinetic energy of the ejected photoelectron.

The nuclear ionic wavefunction is obtained as

rw
+
(E, t)ª ¯

i

ò &
t

­ ¢

exp 9 ® i0 x#
®

E

ò 1 t « : a
#
(t « ) exp 0 ® i(TW ­ V

+
) (t ® t « )

ò 1
¬ l

+"
(E )exp 0 ® iHW

"
t «

ò 1 rw
"
(S )ª dt« . (58)

Note that this expression is very similar to that obtained in the case of a neutral-to-

neutral transition, that is equation (5). There are, however, two diŒerences: ® rstly, the

reduced frequency x
#
(E ) ¯ x

#
® E} ò enters into the integral and, secondly, the

transition dipole moment now carries an additional dependence on the photoelectron

energy. Whereas the latter dependence will be ignored in what follows (for a correct

and much more involved treatment, see the recent papers by McKoy and co-workers

[80, 81]), the ® rst point is of great importance here, since for each reduced frequency

a diŒerent nuclear ionic wavefunction is prepared.

The photoelectron spectrum, obtained at the delay time T, is de® ned as

P(E, T ) ¯ lim
t!¢

©w
+
(E, t) rw

+
(E, t)ª. (59)

Here the time limit is obtained when the probe pulse stops interacting with the sample

so that the ionic population remains constant. For completeness we note that the total

ion yield is calculated as the integral of P(E, T ) over the electron energy.

A re¯ ection principle is now derived using the arguments presented in the last

section. Regarding times t after the probe pulse interaction and neglecting the

commutators of TW with the operators V
+

and l
+"

, the ionic wavefunction can be

approximated as
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Femtosecond pump± probe spectroscopy 111

Figure 4. Vibrational wave-packet dynamics of Na
#

in its (2) "R+
u

state after femtosecond
excitation. The modulus squared of the coordinate-dependent wave packet for one
vibrational period is shown.

w
+
(r, E, t) C exp 0 ® iHW

+
t

ò 1 & ¢

­ ¢

exp 9 ® i0 x#
®

E

ò
®

D

ò 1 t « : a
#
(t « )l

+"
w

"
(r, T )dt « . (60)

Here, as before, D ¯ V
+
® V

"
denotes the diŒerence potential between the electronic

states coupled in the probe transition. Evaluation of the time integral within the points

r
i
of stationary phase, that is where

D(r
i
)® ( ò x

#
® E ) ¯ 0, (61)

yields the photoelectron spectrum as

P(E, T ) C
i

rl
+"

w
"
(r

i
, T ) r#. (62)

We note that the stationary-phase approximation applied above is only of limited

validity. In fact, since the time integral contains the pulse envelope (and thus is not

proportional to a representation of the d function) the photoelectron spectrum maps

the probability density only within a `low resolution ’ .

In the case when the diŒerence potential is linear we ® nd that, for a ® xed probe

frequency x
#
, the photoelectron spectrum regarded as a function of energy E directly

re¯ ects the probability density. In more detail, in the latter case only a single solution

r
"

of equation (61) exists so that, in analogy to equation (51), we ® nd that
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112 N. E. Henriksen and V. Engel

Figure 5. Time-resolved photoelectron spectra for photoionization of Na
#

out of the (2) "R+
u

state. The temporal changes of the spectrum re¯ ect the vibrational motion as displayed
in ® gure 4.

P(E, T ) ¯ rl
+"

w
"
(r

"
, T ) r#. (63)

Since now the wave packet w
"
(r, T ) is a non-stationary state, diŒerent spectra are to be

expected at diŒerent times, that is recording the electron kinetic energy distributions

at diŒerent pump± probe delays enables us to monitor temporal changes of the

probability density distribution.

Recently, several experiments have been performed employing time-resolved

photoelectron spectroscopy to investigate the nuclear dynamics in molecules [82± 90].

We would like to draw readers’ attention to a beautiful experiment on the sodium

dimer [91], which was the ® rst direct conformation of the re¯ ection principle in time-

resolved photoelectron spectroscopy, as predicted theoretically earlier [76].

In our ® rst numerical example to illustrate time-resolved photoelectron spec-

troscopy, we regard the femtosecond excitation of the sodium dimer to its (2) "R +
u

double-minimum state which has been studied by pump± probe ionization spec-

troscopy [71, 92]. The pump excitation to vibrational states above the potential barrier

results in the preparation of a localized wave packet. The modulus squared of this

packet is displayed in ® gure 4 covering an entire vibrational period. We note that it is

also possible to prepare a superposition of states with energies below the potential

barrier, resulting in quite diŒerent wave-packet dynamics [77].

Calculated photoelectron spectra are shown in ® gure 5 as a function of

pump± probe delay. The temporal changes in the energy distribution nicely re¯ ect the

wave packet’ s vibrational motion. In particular, the diŒerence potential here is such

that an inward motion of the wave packet results in the shift of the spectrum towards

higher photoelectron kinetic energies. An additional structure which is not apparent in
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Femtosecond pump± probe spectroscopy 113

Figure 6. H
#
O pump± probe ionization scheme showing cuts of potential surfaces cor-

responding to the electronic ground state, an excited state and the ionic ground state as
a function of the reaction coordinate in the intermediate state. The solid arrows indicate
the pump and probe wavelengths. The lengths of the broken arrows indicate the energies,
where maxima in the photoelectron spectra are expected if ionization occurs at diŒerent
times during the fragmentation process.

® gure 4 arises because the diŒerence potential is not monotonic at smaller bond

lengths.

In passing, we note that our calculation assumed a constant transition dipole

moment l
+"

. Since the potential barrier is caused by non-adiabatic coupling between

diŒerent electronic states, this approximation breaks down. However, the overall

picture presented here is correct, as can be seen by comparison with recent work

[80, 81].

Let us now turn to a second example. Figure 6 illustrates a pump± probe ionization

experiment for the HOD molecule [93]. Cuts through the potentials of diŒerent

electronic states are drawn along the reaction coordinate s of the dissociative

intermediate state. Here the pump excitation is from the electronic ground (X) to the

® rst electronically excited state (A). This state is purely repulsive leading to H ­ OD

and D ­ OH fragments. The probe process results in the preparation of HOD+ in its

electronic ground state. Let us, in what follows, use the same notation as before,

namely r0ª, r1ª and r­ ª for the three electronic states. The solid arrows in the ® gure

indicate the centre frequencies of pump and probe pulses. The broken arrows, on the

other hand, indicate photoelectron energies E which ful® l the resonance condition

V
+
(s)® V

"
(s)® (x

#
® E ) ¯ 0.

The dynamics of the fragmentation are illustrated in ® gure 7 which displays

contour lines of the potential V
"
(R

H
, R

D
) as a function of the OH (OD) distance

R
H

(R
D

). The bending angle of the molecule has been ® xed to a value of 104 °
corresponding to the equilibrium angle in the electronic ground state. It has been

shown that the fragmentation process starting from the rovibrational ground state in

r0ª is nearly independent of the bonding angle [64]. This allows for a realistic

simulation using a ® xed value for this coordinate.

The dynamics of a wave packet created with a pulse of 12 fs width and a centre
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114 N. E. Henriksen and V. Engel

Figure 7. H
#
O fragmentation dynamics upon femtosecond excitation. Contours of the

potential surface of the dissociative electronic state are displayed as a function of the OH
(R

H
) and OD (R

D
) distances. Also shown is the modulus squared of the wave packet

prepared in the pump process at diŒerent times, as indicated. The dissociation into the
two reaction channels (D ­ OH, H­ OD) is seen in the bifurcation of the wave packet.
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Femtosecond pump± probe spectroscopy 115

frequency corresponding to 8 eV (maximum of the absorption band) is also illustrated

in ® gure 7, which shows contours of the probability density at diŒerent times. Here the

value of 0 fs corresponds to the centre of the pump pulse. At early times, the wave

packet w
"
(R

H
, R

D
) is prepared on top of the reaction barrier of the potential V

"
. In the

course of the fast dissociation process a bifurcation occurs, resulting in two packets

moving into the diŒerent reaction channels.

It is clear that the re¯ ection principle here cannot yield a complete picture of the

probability density. The resonance condition which establishes the connection between

rw
"
r# and the photoelectron spectrum in our two-dimensional model is

D(R
H

, R
D

)® (x
#
® E ) ¯ 0. (64)

Thus, in contrast with the diatomic case, there are several points (Ri
H

, Ri
D

) for which

equation (64) holds (in fact, equation (64) de® nes complete one-dimensional cuts

through the two-dimensional diŒerence potential). Nevertheless, the two wave packets

move essentially along the reaction coordinate and it is to be expected that the time-

resolved photoelectron spectrum maps the wave-packet motion along the reaction

path. This is indeed the case in our example, as can be observed from ® gure 6. The

displayed spectra were calculated using a probe pulse of the same width as the pump

pulse and a frequency corresponding to an energy of 12 eV. The ® gure contains results

for H
#
O and its isotopes. In each case, one can nicely see traces of the wave-packet

dynamics. Since the diŒerence potential increases with increasing values of the

reaction coordinate s (® gure 8), the spectra shift from higher to smaller energies. For

times up to 10 fs the spectra re¯ ect the spreading of the packet. For long delay times

the spectrum will converge to a curve representing the spectral width of the probe

pulse. The reason for this behaviour is that in the asymptotic region the diŒerence

potential along the reaction path becomes constant so that the time integral (60) is

independent of s and, when it is considered as a function of the photoelectron energy

E, is the Fourier transform of the pulse-envelope function, that is the pulse envelope

in the energy domain. Note, however, that in general the photoelectron spectrum will

re¯ ect the vibrational motion of the fragments. The photofragmentation of water is a

very fast process and to obtain the spectra, as shown above, one needs very short

pulses with large frequencies. A measurement of the pump± probe photoelectron

distributions has not been performed to date ; we note, however, that recently a

pump± probe ionization experiment on the water molecule indeed has been carried

through [94].

5.2.2. Integrated pump± probe ¯ uorescence spectroscopy

Time-resolved photoelectron spectroscopy, as discussed in section 5.2.1, requires

the recording of a two-dimensional signal as a function of the delay time T and the

photoelectron energy E. In what follows we want to show that pump± probe

¯ uorescence spectroscopy, as discussed in the ® rst part of this review, is also able to

yield information about radial probability densities although the corresponding signal

is recorded as a function of only a single parameter, namely the delay time. In

particular, we treat the pump± probe process illustrated in ® gure 1. In the case of

fragment detection (see sections 2.2 and 3.3) the signal is approximately given by

equation (33). In order to relate the pump± probe signal to the probability density

distribution q
"
(r, T ) ¯ rw

"
(r, T ) r# we evaluate the time derivative of the signal to

obtain [95]
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116 N. E. Henriksen and V. Engel

Figure 8. Time-resolved photoelectron spectra for water isotopes. The shift of the spectra
towards lower energy as a function of time re¯ ects the motion of the wave packets along
the reaction coordinate into the reaction channels as illustrated in ® gure 7.

d

dT
P(T ) ¯ & ¢

rp

w $
"
(r, T )

d

dT
w

"
(r, T )dr ­ CC, (65)

where CC is the complex conjugate. Assuming that the pump pulse stopped interacting

with the sample, the wave packet w
"

propagates unperturbed so that

d

dT
P(T ) ¯ & ¢

rp

w $
"
(r, T ) 0 ® i

ò 1 HW
"
w

"
(r, T )dr ­ CC. (66)

In the asymptotic region (r " r
p
) the Hamiltonian H

"
equals the kinetic-energy

operator (except for a constant which does not change the following considerations

and is dropped in what follows). Thus we arrive at the equation

d

dT
P(T ) ¯

iò

2m & ¢

rp

w $
"
(r, T )

d#

dr#
w

"
(r, T )dr ­ CC. (67)

The integral can be evaluated resulting in the expression

d

dT
P(T ) ¯

ò

2mi 0 w $
"
(r, T )

d

dr
w

"
(r, T )® w

"
(r, T )

d

dr
w $

"
(r, T )1

rp

, (68)
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Femtosecond pump± probe spectroscopy 117

where the subscript indicates that the expression has to be evaluated at r ¯ r
p
. Thus,

the time derivative of the signal equals the probability ¯ ux j(r
p
, T ) through the point

r ¯ r
p
. Although (d}dt) P(T ) does not directly re¯ ect the probability density at a

certain point in time, it is very much related to it. Rewriting the wavefunction in terms

of the density q
"

[96], that is

w
"
(r, T ) ¯ [q

"
(r, T )]"/# exp 0 iS(r, T )

ò 1 , (69)

with a real function S(r, T ), the signal takes the form

d

dT
P(T ) ¯

ò

m 0 q"
(r, T )

d

dr
S(r, T )1

rp

. (70)

If the function S(r, T ) depends only weakly on time, the signal indeed is proportional

to the probability density passing through r
p
. Analytical considerations show that the

time dependence of S(r, T ) is weak for large mass and available energy [95]. The above

connection enables us to determine q
"
as a function of distance, as will be demonstrated

below using a numerical example.

Let us, at this point, comment on the general multidimensional (N-dimensional)

case. Here the mapping is, of course, not unique in the sense that a signal recorded as

a function of one parameter cannot re¯ ect a density depending on many coordinates.

This was already discussed regarding the photoelectron spectroscopy of the water

molecule in section 5.2.1. Using the concept of a reaction coordinate (as for the

photodissociation of water) the N ® 1 remaining degrees of freedom can be integrated

out and the ¯ ux-mapping procedure will give, to a good approximation, a cut of the

moving wave packet along this coordinate.

Let us, for completeness, discuss the ¯ uorescence signals arising from the detection

of the wave packet in the inner potential region (transition-state detection, section

2.1). To a good approximation we can represent the Franck± Condon window function

by a square window of width 2d :

F [D(r)® x
#
] ¯ l

#"
h[r ® (r

p
® d )] h[(r

p
­ d )® r]. (71)

Evaluating, as above, the time derivative of the signal we obtain the expression

d

dT
P(T ) ¯ j(r

p
® d, T )® j(r

p
­ d, T ). (72)

Here we assumed that the potential V
"
(r) is constant over the interval [r

p
® d, r

p
­ d ].

Thus, we measure the diŒerence in ¯ uxes at two spatial points for a given time. In the

limit that these points are su� ciently close, we may write

d

dT
P(T ) C (2d )

j(r
p
® d, T )® j(r

p
­ d, T )

2d

C ® 2d 0 d

dr
j(r, T )1

rp

¯ 2d
d

dT
q
"
(r

p
, T ), (73)

where the last equality follows from the continuity equation satis® ed by q
"
(r, t) [96].

Integrating over time, one ® nds the equation

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
5
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



118 N. E. Henriksen and V. Engel

Figure 9. (a) Calculated pump± probe signals in the case of fragment detection and (b) the
respective time derivatives. Signals are shown for pump pulses of 30 and 60 fs width, as
indicated. In each case, the time derivatives resemble the probability density at the inner
boundary r

p
of the Franck± Condon window at delay time T.

P(T ) C 2d q
"
(a, T ), (74)

which alternatively can be inferred from equation (13) within the same approxi-

mations. Thus, in the case of a transition-state detection and for a narrow

Franck± Condon window, the density can be directly correlated to the pump± probe

signal.

Figure 9(a) displays pump± probe signals calculated for two diŒerent widths of a

Gaussian pump pulse. In calculating the signal we employed equation (33). The

frequency was set to 4.6 eV which corresponds to excitation in the vicinity of the

absorption maximum. In both cases the time T ¯ 0 corresponds to the maximum of

the respective pump pulse. The typical increase from zero to a constant is seen,

re¯ ecting the motion of the wave packet into the excitation window (see section 3.3).

The time derivatives of the signals (® gure 9(b)) are both Gaussian-like curves. We

shall now map these curves into coordinate space using the procedure described above.

Since the wave packets are located in the asymptotic region, they move with a constant

speed towards larger distances. We assume the expectation value of the energy to be

©w
"
rH

"
rw

"
ª ¯ x

"
® V

"
(r ¯ ¢), which re¯ ects energy conservation in the limit of long

pulses. The velocity Š
!

is given by Š
!
¯ [2[x

"
® V

"
(r ¯ ¢)]}m]."/# Using this value, the

r-dependent density can be obtained as
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Femtosecond pump± probe spectroscopy 119

Figure 10. Constructed (Ð Ð ) and numerically calculated (± ± ± ) wavefunctions (absolute
square): (a) 30 fs excitation; (b) 60 fs excitation (see ® gure 9).

q
"
(r

p
­ Š

!
t, T ) C 0 d

dk
P(k)1

k=T­ t

. (75)

In performing the construction of the wave-packet density it should be clear that,

in order to obtain it in its entirety, the wave packet must have passed completely the

point r
p
.

Figure 10 compares the exact calculated densities q
"
(r, t) with the densities inverted

from the signals. Here we used pulses of 30 fs (60 fs) width and equation (75) was

applied 140 fs (180 fs) after the maximum of the respective pump pulse. The diŒerent

curves for the two pulse lengths are hardly distinguishable. This con® rms that indeed

the probability-density amplitudes can be inverted from the pump± probe ¯ uorescence

signal and the time dependence of the phase function (d}dr)S(r, T ) is negligible in our

example.

One has to keep in mind that the outgoing wave packet spreads in coordinate

space. The spreading cannot be determined from the signal. However, this would in

principle be possible if excitation to another excited electronic state at a diŒerent

critical distance r
p

could be achieved. Furthermore the distance r
p

is, in general, not

precisely known. In this case the r-dependent density can be determined from an

experimental signal within an unknown shift on the r axis only.

5.2.3. Phase retrie Š al

Above we have described two methods to obtain the coordinate-dependent
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120 N. E. Henriksen and V. Engel

probability density prepared by a femtosecond pulse. Quantum mechanics uses

complex-valued wavefunctions to predict the outcome of measurements. We now pose

the question of whether it is possible to determine the phase of the wavefunction. This

`phase-retrieval ’ problem has been discussed extensively ; see for example [97± 100] for

theoretical work and [101, 102] for experimental work. Our starting point will be the

density distribution in coordinate and momentum space. Already Pauli [103] was

concerned with the question of whether knowledge of these densities is su� cient to

determine the complex-valued wavefunction. The same question arises in microscopy

where intensity distributions in image and diŒraction planes are measured [104± 107].

Below we present an iterative scheme originally proposed by Gerchberg and Saxton

[104] which allows for the characterization of the wavefunction from the density

distributions in coordinate and momentum space. Thus, it is necessary to out-

line methods to obtain the momentum-space density. This will be done for the

speci® c example of the photofragmentation of a diatomic molecule, as is illustrated

in ® gure 1.

In the case that we refer to, the pump excitation results in photofragments with

diŒerent momenta. In what follows we shall drop the subscript 1, indicating the

wavefunctions, the propagator, etc., belonging to the electronic state r1ª. The

fragment momentum distribution q(p) is the projection of the wave packet on

momentum eigenstates rw
p
ª with relative kinetic energies E

p
¯ p#}2m :

q(p) ¯ lim
t!¢

r©w
p
rw(t)ªr# ¯ lim

t!¢

rw(p, t) r#. (76)

Thus q(p) equals the absolute square of the momentum-space wavefunction. This

distribution can be determined by a KETOF measurement, see the beginning of

section 5.2. We shall not discuss the question of the experimental resolution which is

important to estimate the accuracy of the phase construction; rather the following

discussion is focused on the basic principles ; for more details see [108].

The momentum-space density is measured in the limit of long times, but q(p, t)

remains unchanged while the wave packet moves through the region where the

potential V(r) is constant. Hence we can think of the measured q(p) and q(r) as

belonging to the same time t
!
, the time when w(r) 3 w(r, t

!
) and w(p) 3 w(p, t

!
) have

just entered the asymptotic region. It is worthwhile to mention that the measurement

of the KETOF spectrum is not the only possible experimental method to obtain the

momentum-space density. Projection of the ® rst-order state (2) on to the scattering

states rw
p
® ª of energy E

p
yields, for times t after the pump excitation is ® nished [109],

the expression

©w
p
® rw(t)ª ¯ exp 0 ® iE

p
t

ò 1 ©w
p
® rl

"!
rw

!
ª I(E

p
), (77)

with the integral

I(E
p
) ¯ & +¢

­ ¢

a(t « ) exp 0 iEp
t «

ò 1 dt « . (78)

We now concentrate on a time t
!

where the state rw(t)ª is completely localized in the

asymptotic region. Inserting the de® nition of rw
p
® ª in terms of the Mù ller operator

X
­

[110], one ® nds that

©w
p
® rw(t

!
)ª ¯ ©X

­
w

p
rw(t

!
)ª ¯ ©w

p
rX ‹

­
w(t

!
)ª, (79)
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where

X ‹

­
¯ lim

t!+¢

[U ‹

!
(t)U(t)], (80)

and U
!
(t) is the free-particle propagator. Since rw(t

!
)ª is localized in the interaction-

free region X ‹

­
is the unit operator. Noting furthermore that r©w

p
® rl rw

!
ªr# is

proportional to the absorption cross-section [64] r(x) (where x ¯ e
!
­ E

p
; see section

5.1.1) we ® nally ® nd the asymptotic momentum distribution

r©w
p
rw(t

!
)ªr# ¯ rw(p, t

!
) r# C r(E

p
) rI(E

p
) r#. (81)

The last equation relates the momentum-space density to the product of the absorption

cross-section and the spectral distribution of the pump pulse. Thus a measurement of

r(E
p
) can provide the momentum distribution if the employed laser pulse is well

characterized.

The experiments described above allow, at least in principle, for a determination of

the densities q(p) ¯ rw(p) r# (see this section) and q(r) ¯ rw(r) r# (see section 5.2.2). It is

immediately clear that two wavefunctions w(r) and exp (iu)w(r) have the same

densities if u is a constant, that is sole knowledge of the densities does not ® x the overall

phase, which is, however, irrelevant in quantum mechanics. Besides that, wave-

functions with a non-trivial phase diŒerence can also yield identical densities [105,

106]. The mathematical conditions to ® nd a unique (up to an overall phase factor)

solution have been worked out [106]. Without going into mathematical details, we

note that, in our case of photofragmentation , the scheme which will be presented

below indeed converges to the correct wavefunction ; for details see [108].

We shall now describe an iterative scheme to ® nd the complex-valued wavefunction

from the known densities. Note that a similar scheme has been employed in the

inversion of potential curves from experimental data [111].

Denoting the experimentally determined functions as a(p) and a(r), the scheme is

started as (equivalently the momentum-space density could serve as starting point)

w
!
(r) ¯ a(r), (82)

and the Fourier transform of this function yields wh
!
(p). Next we calculate

wh
"
(p) ¯ a(p)

wh
!
(p)

rwh
!
(p) r

. (83)

Taking the Fourier transform yields w
"
(r), which is used to calculate

w
#
(r) ¯ a(r)

w
"
(r)

rw
"
(r) r

. (84)

This iteration scheme may be continued until convergence is achieved. A measure for

the deviation of the iterated coordinate-space amplitude from the exact amplitude is

given by

d
n

¯ & [ rw(r) r® rw
n
(r) r]# dr. (85)

Gerchberg and Saxton [104] have shown that the iteration is stable in the sense that d
n

cannot increase with increasing n (considering only odd n because, for even n, d
n

equals

zero by construction).

In a numerical application we employ the same model for the dissociation of the
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122 N. E. Henriksen and V. Engel

Figure 11. (a) Coordinate-space and (b) momentum-space densities for the excitation with two
time-delayed Gaussian pump pulses. The densities were calculated at a time when the
wave packet entered the asymptotic region.

ICN molecule, as was discussed earlier in this review. We calculated wavefunctions for

a pump excitation with a pulse envelope consisting of the sum of two Gaussians of

30 fs width, which are delayed with respect to each other by T ¯ 40 fs. This results in

the coordinate-space wave packet as displayed in ® gure 11(a). Here the momentum-

space density exhibits a characteristic structure (® gure 11 (b)) which can be understood

as follows : two wave packets r}(t)ª and r}(t® T )ª are created by identical but delayed

pulses ; the asymptotic fragment distribution then is

q(p) ¯ lim
t!¢

r©w
p
r[ r}(t)ª­ r}(t ® T )ª]r#. (86)

This expression can be evaluated in a momentum space as

q(p) ¯ r}(p) r#[2­ 2 cos (E
p

T )]. (87)

Thus q(p) contains an interference term causing the structure seen in ® gure 11(b). This

is analogous to a two-slit experiment ; in our case the separation of the slits corresponds

to the pulse-delay T [112].

Using the densities displayed in ® gures 11 (a) and (b) as input in the Gerchberg±

Saxton algorithm we arrived at the functions displayed in ® gure 12. The ® gure

contains the real parts of the spatial wavefunctions obtained after n iterations. In the

® gure for n ¯ 9 the real part of the numerically exact wavefunction (the target

wavefunction) is also plotted. It is nearly identical with the iterated function. Of

course, the functions will, in general, diŒer by an overall phase factor which we
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Figure 12. Real part of the coordinate-space wavefunction constructed from the coordinate
and momentum densities after n iteration steps, as indicated. The ® gure for n ¯ 9 contains
the numerically exact function.

eliminated by ® xing the phase of both functions to be the same at a particular value of

r. We note that the imaginary part of the wavefunctions shows a similar convergence

behaviour.

6. Summary

We have reviewed the relation between femtosecond time-resolved pump± probe

signals and nuclear wave-packet motion in molecules. In doing so, three levels of `state

probing ’ were highlighted, namely the detection of temporal changes in, ® rstly, the

average position, secondly, the probability density and, thirdly, the wave packet itself

including its complex-valued phase.

The focus was on the detection via the total frequency integrated pump± probe

¯ uorescence signal and via time-resolved photoelectron spectroscopy.

For detection via the pump± probe ¯ uorescence signal, we discussed the connection

between the time delay and the average position of the wave packet created by the

pump pulse. Furthermore, we elaborated on how to deconvolute the `blurring ’ of the

signal due to pump pulses with a ® nite temporal width.

We showed how time-resolved photoelectron spectroscopy can be used in order to

obtain the temporal change in the nuclear probability density. Here the kinetic energy

distribution of the photoelectrons, detected at a certain delay time is a direct measure

of the coordinate-dependent density at that particular time.

Whereas photoelectron spectroscopy needs the recording of a spectrum as a

function of two parameters (namely energy and delay time), integrated pump± probe

¯ uorescence signals are detected as a function of delay time only. We have
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124 N. E. Henriksen and V. Engel

demonstrated that this method is also capable of characterizing nuclear probability

densities. In the case of fragment detection in a unimolecular reaction, the time

derivative of the signal is a measure of the nuclear density (as a function of the reaction

coordinate), entering the asymptotic reaction channel.

As a ® nal application of femtosecond time-resolved spectroscopy we demonstrated

that, by combination of various techniques, it is possible to characterize nuclear wave

packets including their complex phase.
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